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Outline  

• Auditory neurophysiology in animals vs. non-invasive neural  
recordings in humans—where is there common ground? ➡ 
here, human recordings = electroencephalography (EEG) & 

                                         magnetoencephalography (MEG) • 
Neural processing of same-species-vocalizations and neural  
processing of speech  



➡ speech as vocalization that is also a carrier for language  

• Categorical perception & neural processing   
 of elements of vocalization/speech 

Mammalian Auditory Brainstem  
bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512309; this version posted Jan 

available under aCC-BY-NC-ND 4.0 Internation(which was not certified by peer review) is the author/funder, who has granted bioRxiv a li 

V  

μV) Potential (  



IIII  

Butler & Lomber (2013) Shan et al. (2022)Time (ms)  

Figure 2. The grand averaged broadband click-evoked ABR 
SEM (n=22). Waves I, III and V are annotated. All individual subj 
supplemental material Figure S1.   



bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512309; this version posted January 4, 2023. The copyright holder for this preprint Auditory 

Brainstem Responses in Humans  
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made  

available under aCC-BY-NC-ND 4.0 International license.  

μV) Potential (  

V  

IIII  

Time (ms)  

• typically a 
response to a 
punctate stimulus 
• characterized 
by 3 robust peaks  
• wave I: 
cochlear nerve  
• wave III: 



cochlear nucleus  
• wave V: inferior 
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Figure 2. The grand averaged broadband click-evoked ABR waveforms. Shaded area shows ±1   
1   

Auditory Brainstem Response (ABR)  
SEM (n=22). Waves I, III and V are annotated. All individual subject responses are shown in  
supplemental material Figure S1.   

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512309; this version posted January 4, 2023. The copyright holder for this preprint  
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made   

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.14.512309; this version posted January 4, 2023. The copyright holder for this preprint bioRxiv preprint doi: 

https://doi.org/10.1101/2022.10.14.512309; this version posted January 4, 2023. The copyright holder for this preprint Auditory 

Brainstem Responses in Humans  



available under aCC-BY-NC-ND 4.0 International license.  
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made   

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 
madavailable under aCC-BY-NC-ND 4.0 International license.  

available under aCC-BY-NC-ND 4.0 International license.  

• also for continuous speech stimuli  

μV) Potential (  

V  

IIII  

Magnitude (AU)  

V  

III  
I  



• temporal response 

function 
(TRF) • 

obtained by 

deconvolution 
of  response 
with stimulus   

• stimulus 
representation 
here: auditory 
nerve model 
(Zilany   

et al., 2014)  
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Figure 5. General music- and speech-evoked ABR waveforms using the ANM as the regressor  • 
wave III: cochlear nucleus  

in deconvolution. A. The grand averaged general music- and speech-evoked ABR waveforms.   
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Thalamo-cortical Response in Humans 
TRF of 70-100 Hz speech envelope  

MEG 

. Kulasingham, C. Brodbeck and A. Presacco et al. NeuroImage 222 (2020) 117291  



TRF of 70-100 Hz speech carrier  

40 ms peak latency  
 ⟹ primary auditory cortex  

Kulasingham et al. (2020) High Gamma Cortical Processing of Continuous Speech …, NeuroImage  
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Primary cortex modulated by selective attention  
Attend > Ignore   

Commuri et al. (2023) … High-Gamma Band Depend on Selective Attention, Front Neurosci  

Outline  

• Auditory neurophysiology in animals vs. non-invasive neural  
recordings in humans—where is there common ground? ➡ 
here, human recordings = electroencephalography (EEG) & 

                                         magnetoencephalography (MEG) • 
Neural processing of same-species-vocalizations and neural  



processing of speech  
➡ speech as vocalization that is also a carrier for language  

• Categorical perception & neural processing   
 of elements of vocalization/speech 

Vocalizations & Categorical Perception  

• Vocalizations, including speech, are often perceived  
categorically  

b  

Proportion of trials reported
 
as the same10080604020  ‘dad’ • Even in rhesus 



monkeys   

Tsunada et al. (2011)  
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Bizley & Cohen (2013) 

Vocalizations & Categorical Perception 

• Categorical perception adds robustness to communications  



• Consequently, categorical perception is also a robust percept   

h e l p h el p h e l p h e l p Dilley & Pitt (2010) 
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• Categorical perception adds robustness to communications  

• Consequently, categorical perception is also a robust percept   

h e l p h el p h e l p h e l p Dilley & Pitt (2010) 

Cortical Responses to Phonemes in Monkey  

• Cortical neurons in anterolateral belt (ALB) respond  
categorically to phonemes.           Tsunada et al. (2011)  
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Cortical Responses to Phonemes in Humans • 
How does one separate human cortical responses to phonemes  



from cortical responses to the sounds of phonemes? • 
Multivariable regression in the time-domain   
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Further Disentangling Phonemes  

• Phonemes, while not identical to their underlying acoustics, are  

still strongly correlated with their underlying acoustics • even 
mTRFs have trouble when predictors are too correlated  

• Are there phoneme measures could we use that are less  



correlated with the acoustics?  

• Yes! based on linguistic statistical distributions:  
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Number of  times a word  that starts  with 
this   

Phoneme 

Surprisal Surprisal  

K EY M …  



sequence   
occurs in   
SUBTLEX  

K EY …  
52908  
(90 words)  

Number of   
words that   
start with   
this sequence  

SUBTLEX:   
23875 (45%)  (4 words)  

K EY S …  
16048 (30%)  (13 words)  

K EY K …  
2598 (5%)  (3 words)  



K EY N …  
1337 (3%)  (13 words)  

…  
“came”, “Cambridge”, …  

“case”, “cases”, “caseworker”,   
“casein”, …  

“cake”, “caked”, “cakes”  

“cane”, “canine”, “Canaan”,   
“Kane”, “Keynesian”, …  

∑ ⎛⎝⎜⎞⎠⎟∑ freq
word (i −1)  

51 million words   
movie subtitle database  

surprisali= −log2 freqword (i) word∈cohorti  
word∈cohorti−1  



Cohort Entropy  
Cohort entropy   

‣ How unpredictable is the current word?   

L EY K …  

K EY K …  
B EY K … 

lake  
(95%) Entropy  



lakes (5%)  
cake  

(88%) cakes (11%)  
caked (1%)  
baker (29%)  
bacon (25%)  
baked (14%)  
bake  
(14%)  

∑ 
Hi

cohort= − pword log2 pword word∈cohorti  

Cortical Responses to Phonemes in Humans • 
How does one separate cortical responses to phonemes  from 



cortical responses to the sounds of phonemes? • Multivariable 
time-domain regression:   

.  

• multi-Temporal Response Functions (mTRFs)  
Gammatone   

Envelope  

.  
Gammatone   

.  
Envelope Onset  

.  

acoustic 
features  
   
Phoneme   
Onset  
Gammatone   
Gammatone   
Envelope  
Envelope  
Phoneme   
Surprisal  
Gammatone   

Gammatone   
Envelope Onset 

Envelope Onset  



Gammatone  

Envelope  

Gammatone  Envelope Onset 

Phoneme   
Onset  

*  

*  
*  

. . .  

. .  

. . .  

Measured 

Neural signals 

Measured Neural 

signals  

      
Cohort  

Entropy  
Phoneme  
Surprisal  *  

* *  

Phoneme   
Phoneme   

Cohort   

*  Measured Neural signals  
Onset  
Word   Measured Neural signals  

phonemic 
features  
Onset  
Onset  
Phoneme   
Phoneme   
Surprisal  

Surprisal  
Unigram   
Surprisal  
Cohort   
Cohort   
Entropy  
Entropy  
GPT2   
Surprisal  
Entropy  

Word   
Onset  

Unigram  Surprisal  

GPT2   
Surprisal  

* *  

* *  

.  
*  
.  
.  
.  

.  

.  

Predicted Neural 
signals Predicted 
Neural signals  

Word   

Speech 
Representations 

TRFs 
Word   
Onset  
0 1  



.  
0 1  

.  
Onset  

Unigram   
Unigram   
Surprisal  
Surprisal  
Speech representations  
Speech representations  
TRFs  
TRFs  

.  

.  
Predicted Neural signals Predicted Neural signals  

Study Experimental Design  

Speech-envelope  Modulated 
Noise  

Non-words  

Scrambled words Narrative  



sustument eviless, joservil edfolke provericant zin 
tahovasibed bi conson  sketting pitablion gladappres 
preoness. Feno unknoways, chasizer, giiz,  warrowied 

tanatum impinges. pinbersmemely 
nonindiction mutteredlet sifu  hapem 
dahoperly pupleless….   

A liquid is only speak, second even for 
good reach the attack us. Living fact,  

which it’s was plants, fermentation 
consequences an ambrosial by 
solitary, I  in to this the his in both 
to for an enough water. Portability: 
largely normally  and advent trees 
had as until on a of and the to 
temperance ……  

If you happened to find yourself on the banks of the 
Ohio River on a  particular afternoon in the spring of 
1806-somewhere just to the north of  Wheeling, West 
Virginia, say, you would probably have noticed a 
strange  makeshift craft drifting lazily down the river. 
At the time, this particular …..  

} continuous 
speech-like  prosody 
and  rhythm   

  



Karunathilake et al. (2025) Neural Dynamics of the Processing of Speech Features … J Neurosci 

Cortical Responses to Speech Acoustics in Humans  
acoustic envelope onsets  
+  

acoustic envelope + _  

_  
0.1  

Noise  
Non-word 

Scrambled 
Narrative  

0.06  

0 200 400 600  

MEG 
0 200 400 600 a.k.a. “speech tracking”  



~60 ms: acoustic bottom-up processing  
~120 ms: acoustic but attention-dependent  

based STRFs are used to model the intertrial vari  

       e LFP. B: correlation between the 

shape  

        ance of the LFP. B: correlation between the 

shape  

Are Human Cortical Latencies “Long”? 
ance of the LFP. B: correlation between the shape  

 measures the similarity of tuning across  of STRFs measures the similarity of tuning across  
of STRFs measures the similarity of tuning across  



nals. Delta-, theta-, and alpha-variance  neural signals. Delta-, theta-, and alpha-variance  
neural signals. Delta-, theta-, and alpha-variance  

e highly correlated, and the higher fre  STRFs are highly correlated, and the higher fre  
STRFs are highly correlated, and the higher fre  

nds (gamma, high gamma, MUA) also  quency bands (gamma, high gamma, MUA) also  
quency bands (gamma, high gamma, MUA) also  

luster of similarity to each other. C:  
show a cluster of similarity to each other. C:  

LFP-based STRFs (ferret A1) 

show a cluster of similarity to each other. C:  
TRFs in each row are measured for the  example STRFs in each row are measured for the  
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• A note for auditory neurophysiologists  
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ferret, spectro-temporal receptive fields  



generally excitatory. The peak latency of the LFP  
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than in the high gamma band. The frequency tun  
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that of the MUA STRF but usually has additional  
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Ding et al. (2016) Encoding of Natural Sounds by Variance of the Cortical Local Field Potential J Neurophysiol- 

Phonemic Responses in Humans  
phoneme onset   
phoneme  surprisal cohort  
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• Clear evidence of phoneme-driven responses, uncorrelated with 
acoustics • Evidence of categorical neural processing of vocalization 
(speech) • Low-level phoneme processing at ~80 ms (not much later than 
60 ms) • Additional later processing at ~350 ms with negative polarity • 



N400-like, associated with predictive coding (Eddine et al., 2024) 

Karunathilake et al. (2025) Neural Dynamics of the Processing of Speech Features … J Neurosci  

Beyond Phonemes  

• In human speech, phonemes building blocks of words 

• Words and groups of words are used to convey 

meaning • Animal vocalizations are often used to convey 
meaning 

Vocalizations Convey Meaning  



• In rhesus monkeys, some vocalizations transmit information  
regarding food quality  

 low-quality: “grunt”  

   high-quality: “harmonic arch” or “warble”  

Bizley & Cohen (2013) 
Grunt Harmonic arch Warble Baseline  

Gifford et al. (2005) The neurophysiology of functionally meaningful categories … J Cog Neurosci  



Responses to Meaningful Vocalizations 
Neurons in monkey ventral prefrontal cortex (VPFC) respond  

categorically based on 
meaning, not acoustics  

• VPFC neurons encode 
transitions   

between calls of different   
abstract categories   

• VPFC neurons do not encode  



Bizley & Cohen (2013) 

transitions between acoustically  
distinct stimuli transmitting the   

est Noise Exemplars  
emplars, the mean z-score value was not 

reliably differ  

ossibility that vPFC neurons ansitions between stimuli that ic classes (Ulanovsky, Las, &  
ent than zero ( p > .05). DISCUSSION  

same information  

Gifford et al. (2005) The neurophysiology of functionally meaningful categories … J Cog Neurosci  

Humans Cortical Responses to Words  



• Words often convey meaning in human speech  

 

word-level features  
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catalogue inner   eye   

The cat a log in a lie Do we…   
cattle   login   library   

‣ Anticipate word boundaries based on context?  

‣ Infer them later based on consistency?   

catalogue inner   
eye   

R T The cat a log in a lie   

cattle  

login   
library   

Figure 1. Recognition of the phrase “The catalogue in a library,” as spoken by speaker of British English: 

“The catalogue in a library”   



/ðəkætəlɒgInəlaIbrI]. The upper panel shows the competitive inhibition process that occurs among activated 
candidate words in an interactive-activation model, such as Shortlist A. Words that compete for the same stretch 
of input inhibit each other via direct, bidirectional inhibitory connections. Only a subset of the best-matching 
candidates is shown. The lower panel illustrates the path-based search through a word lattice used in automatic  

Norris & McQueen, 2008 

Word Surprisal (without context) 
Frequency of words based on SUBTLEX  
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Word Surprisal (contextual)  
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it  
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.  

(via GPT-2) 

Word Responses in Humans  
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0 200 400 600  

0 200 400 600  

• Clear evidence of word-driven responses, uncorrelated with acoustics 
• Evidence of categorical neural processing of vocalization (speech) • 
Low-level phoneme processing at ~100 ms (not much later than 80 ms) • 
Additional N400-like processing at ~450 ms, c.f. predictive coding  

                                                                                        (Eddine et al., 
2024) Karunathilake et al. (2025) Neural Dynamics of the Processing of Speech Features … J Neurosci  

Contextual Word Surprisal Results 
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• Context-based surprisal is more robust than naive surprisal  • N400 like 
response in both predictors, c.f. predictive coding 
                                                                                        (Eddine et al., 2024) 

Karunathilake et al. (2025) Neural Dynamics of the Processing of Speech Features … J Neurosci  

Neural Speech Processing Progression  
• Cortical responses time-lock to 
emergent  features from acoustics to 
context as incremental  steps in the 
processing of speech input occur  

Top-down Bottom-up Structured meaning  

450  
Word-based  

• Phonemic and 
word-based cortical 

processing  are 
categorical   • Contextual word 

surprisal not 
unrelated to  



semantics  

• Long latency 
stages (consistent 
with top-down  
processing) in line 
with predictive 

processing  models  

350 120  

Lexical  

Sub-Lexical Phonemic 

Acoustic  

Speech   

Stimuli  
100 80  

60  

0 0  
time (ms) time (ms)  

Karunathilake et al. (2025) Neural Dynamics of the Processing of Speech Features … J Neurosci  

Application: Is Distorted Speech Intelligible?  



• Even very clear speech may be unintelligible  

• More common: very distorted speech may still be intelligible 

• Can neural categorical encoding of speech features be used  
to determine when the brain processes speech sounds as  
intelligible? 

Intelligibility Experimental Design  
• Manipulate intelligibility 
but   
(a) 

keep acoustics 
unchanged - Speech 
acoustics:   

Vocoded  speech  

Clear speech Vocoded  speech  



three-band noise  
vocoded speech  
- Intelligibility manipulated  via priming  

PRE CLEAN POST  

~20 s ~20 s ~20 s Intelligibility rating (0-5)? Intelligibility rating (0-5)?  

speech clarity rating speech clarity ratingTrial 1  

.
..  

Trial 36  

• Hypothesized 
intelligibility   
4  

measure(s)  

Frequency (kHz)  

- word boundaries  

2  

“Slice an apple through at 
its equator, and you will 
find five small chambers 
arrayed in a perfectly 
symmetrical  

0  
Vocoded speech Clear speech 0 

1 2 3 0 



1 2 3  

Vocoded speech  
0 1 2 3  

-40  

-80  

-120  

starburst—a pentagram.”  
Time (s)  
Time (s)  

Time (s)  

Karunathilake et al. (2023) Neural Tracking Measures of Speech Intelligibility…, PNAS  

Intelligibility Behavioral 
Results (a) ***  



Speech clarity 
increases from Pre 
condition  to Post 
condition  

Speech Clarity Rating  

Intelligibility Rating  
4  

2  

0  

PRE POST  
 Pre Post Condition  

Karunathilake et al. (2023) Neural Tracking Measures of Speech Intelligibility…, PNAS  
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Intelligibility Neural Results  
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Karunathilake et al. (2023) Neural Tracking Measures 
of Speech Intelligibility…, PNAS  
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Summary  
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• Investigating neural speech & language  
The Royal Society is a self-governing Fellowship   
of many of the world’s most distinguished scientists   
drawn from all areas of science, engineering, and   
medicine. The Society’s fundamental purpose, as it   

processing in humans has broader impacts:  
has been since its foundation in 1660, is to recognise,   
promote, and support excellence in science and to   
encourage the development and use of science for   
the benefi t of humanity.  

• clinical applications  
The Society’s strategic priorities emphasise its   
commitment to the highest quality science, to   
curiosity-driven research, and to the development   
and use of science for the benefi t of society.   



• animal communications  
These priorities are:  

• Promoting science and its benefi ts  

• Recognising excellence in science  

• Supporting outstanding science  
What can animal communication teach us about human language

?  

• evolution of language?  
• Providing scientifi c advice for policy  

• Fostering international and global cooperation  

• Education and public engagement   

For further information on the Royal Society  
The Royal Society  
6 – 9 Carlton House Terrace  
London SW1Y 5AG  

T +44 20 7451 2500  

• Categorical perception & categorical neural  
W royalsociety.org  

For further information on Philosophical Transactions   
of the Royal Society B  
T +44 20 7451 2602  

processing in vocalization/speech   
E philtransb@royalsociety.org  
W royalsocietypublishing.org/journal/rstb  

• seen for speech: phonemes, words, … • dissociable from acoustics  

• provides new insight re: linguistics  
• not available unless speech intelligible  
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